

Chemical Engineering Graduate Student Association -

th Annual Research Symposium

Friday, March 8th, 2019 8:00 am - 4:00 pm MSC, TAMU

TABLE OF CONTENTS

Sponsors	2
Welcome	3
Schedule	4
Exhibitors	5
Keynote Address	6
Oral Presentations – Morning Session	7
Oral Presentations - Afternoon Session	8
Poster Session	9
Building Layout	.15

WELCOME

On behalf of the organizing committee we extend you a warm welcome to College Station and the 6th Annual Research Symposium. The purpose of the symposium is to showcase the research conducted in the department and provide students with an opportunity to present their research to industrial representatives. We gratefully acknowledge the sponsorship provided by Ascend Performance Materials, The Dow Chemical Company, Shell, NETZSCH, BASF, The Association of Former Students, Texas A&M Energy Institute, and Mary Kay O'Connor Process Safety Center. This symposium represents the ideal environment for the exchange of ideas to aid in the advancement of science and technology. We wish all the participants a productive and enjoyable event.

ADVISORY COMMITTEE

Dr. Arul Jayaraman	Dr. Perla Balbuena	Dr. Jodie Lutkenhaus	Dr. Katy Kao
--------------------	--------------------	----------------------	--------------

ORGANIZING COMMITTEE

Hallie Graham	Harold Escobar	Yifei Yang
Mahesh Agrawal	M. Stefany Angarita	Rachit Gupta
Joseph Jakubowski	Kathy Rhee	Michael Bae
Naveen K. Mishra	Nutan Patil	Jacob Gruener
Ashwini Ravindran	Edwin Lavi	Opeyemi Olokede
Dongheon Lee	Rushant Sabnis	

CONTACT US

EMAIL:chegsa@chegsa.tamu.eduWEBSITE:https://www.chegsatamu.com/LINKEDIN:Texas A&M Chemical Engineering Graduate Student Association (ChEGSA)

SCHEDULE

TIME	EVENT				
8:00 A.M	Breakfast and Registration - 2401				
8:45 A.M.		Dicakiast and K	2401		
8:45 - 9:00		Opening Re	marks - 2400		
9:00 - 9:30		Keynote Ad	ldress - 2400		
9:30 - 9:40		Trans	sition		
	AdvancedProcessMaterials &EnergyEngineering &BioengineeringOptimization				
	Track A - 2500	Track D - 2402			
9:40 - 10:00	Ethan Kamphaus	Manali Zantye	Baris Burnak	Denis Su F.	
10:00 - 10:20	Nutan Patil	William Tso	Burcu Beykal	Cassio Brunoro A.	
10:20 - 10:40	Tzu L. Chen	Chi Zhang	Abhinav Narasingam	Jingyao Wang	
10:40 - 11:00		Transition			
11:00 - 12:00		Networking S	Session - 2400		
12:00 - 1:00		Lunch	a - 24 00		
1:00 - 2:00		Poster Sess	ion - 2406 A		
2:00 - 2:20	Transition				
2:20 - 2:40	Kathy Rhee Akhil Arora Salih E. Demirel		Salih E. Demirel	Nilesh Ade	
2:40 - 3:00	Akshi Singla	Prashanth K. Siddhamshetty	Mohammed S. F. Bangi	Andreas Ehnbom	
3:00 - 3:30	Break				
3:30 P.M 4:00 P.M.	Closing Remarks and Awards - 2400				

Energy Advanced Materials	Bioengineering	Process Engineering and Optimization	Process Safety
------------------------------	----------------	--	----------------

EXHIBITORS

MSC2400

All the booths will be located in ballroom, come see our exhibitors during the networking hour and breaks in MSC 2400!

Booth Number	Exhibitors
1	ASCEND
2	BASF
3	DOW
4	NETZSCH

KEYNOTE ADDRESS - Dr. Vikram Gopal

Vikram Gopal, Ph.D. Sr. Vice President Technology, Ascend Performance Materials, Houston, Texas, USA

The One Constant: Embracing Change in the Chemical Industry

Vikram Gopal has broad experience in the advanced materials industry with expertise in research and development, product development, process engineering and applications development. Before joining Ascend Performance Materials in May 2015, he was vice president of technology at Invista Engineering Polymer Solutions. Vikram has vast knowledge of the nylon 6,6 market and is credentialed as a Six Sigma Black Belt.

Vikram has been recognized for multiple industry awards for rapid product development and value creation for his teams. He holds a bachelor's degree in petrochemical engineering from the University of Pune in India, a doctorate degree in chemical engineering from the University of Alabama and an MBA from the University of Michigan's Ross School of Business.

ORAL PRESENTATIONS – Morning Session

Time	Advanced Materials & Bioengineering	Energy	Process Engineering & Optimization	Process Safety
	Track A MSC 2500	Track B MSC 2502	Track C MSC 2504	Track D MSC 2405
9:40 -10:00	Li Dendrite Nucleation from First Principles Perspective	Dynamic Power Plant Scheduling with Flexible Carbon Capture in Uncertain Electricity Markets	A Multiparametric Programming Based Approach to Integrate Design, Scheduling, and Control of a Batch Process	Simultaneous Design and Control of an Inherently Safer Extractive Distillation Column
	Ethan Kamphaus	Manali Zantye	Baris Burnak	Denis Su F.
10:00-10:20	Radio Frequency Processing of Preceramic Polymer Nanocomposites and its Application.	Toward Supply Chain Optimization of Renewable Energy Carriers	Data-Driven Optimization with Implicit Constraints: Application to an Ethane Steam Cracking Process	Effects of Obstacle Configuration on Flame Propagation Regimes and Explosion Severity
	Nutan Patil	William Tso	Burcu Beykal	Cassio Brunoro A.
10:20-10:40	Room Temperature Solid-State Lithium Polymer Battery with Polyionic Liquid Pentablock Terpolymer Electrolyte	Reliability Analysis in Synthesis of Direct Water Recycle Networks	Data-Driven Identification of Interpretable Reduced-Order Models Using Sparse Regression	Experimental Study of Electrostatic Hazard inside Scrubber Column Using Response Surface Methodology
	Tzu L. Chen	Chi Zhang	Abhinav Narasingam	Jingyao Wang

ORAL PRESENTATIONS – Afternoon Session

Time	Advanced Materials & Bioengineering Track A	Energy Track B	Process Engineering & Optimization Track C	Process Safety Track D
	MSC 2500	MSC 2502	MSC 2504	MSC 2405
2:20-2:40	Flagellar Hydrodynamics in Bacillus subtilis	Dynamically- Intensified Adsorption-Reaction Processes for Unconventional Natural Gas Utilization	Building Block- Based Design and Intensification of Chemical Processes	Safer design and operation of Proton Exchange Membrane Fuel Cells
	Kathy Rhee	Akhil Arora	Salih E. Demirel	Nilesh Ade
2:40-3:00	Novel Technique to Target Bacteria, Pseudomonas Aeruginosa, via Hetero-Multivalent Binding	Modeling and Control of Proppant Distribution of Multi-Stage Hydraulic Fracturing in Horizontal Wells	Enlarging the Domain of Attraction of Local Dynamic Mode Decomposition with Control Technique: Application to Hydraulic Fracturing	Homeomorphic Isomerism in Macrobicycles
	Akshi Singla	Prashanth K. Siddhamshetty	Mohammed S. F. Bangi	Andreas Ehnbom

POSTER SESSION MSC 2406A 01:00 P.M. - 02:00 P.M.

Poster Number	Name of Presenter	Poster Title
1	Yuchan Ahn	Development of the Optimization Model for the Shale Gas Production with Water Management Considering the Control of Hydraulic Fracturing System in the Unconventional Wells
2	Hyun K. Choi	Designing a Model-Based Feedback Control Framework of Kappa Number and Porosity with a Multiscale Modeling
3	Dongheon Lee	Construction of a Semi-Stochastic Intracellular Signaling Model Via Global Sensitivity Analysis and Probability Density Estimation
4	Jianping Li	Process Innovation Using Block Superstructure
5	Naveen Mishra	Multilayer Polymeric Films on Hollow Fibers for Light Gas Separation
6	Kasturi Sarang	Tannic Acid as a Small Molecule Binder for Silicon Anodes in Lithium-Ion Batteries
7	C. Doga Demirhan	An Integrated Data-Driven Modeling & Global Optimization Approach for Production Planning
8	Xiaofei Zhao	Anti-oxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersion
9	Spyridon Tsolas	Systematic Analysis, Design and Optimization of Water-Energy Nexus
10	Dali Huang	Magnetically Driven Functionalized Nanoplatelets Pickering Emulsion for Removal of Oil Contaminants from Water
11	Rachit Gupta	Engineering Design and Optimization of Protein Transformation into Bacterial Cells
12	Yuhe Tian	Towards the Incorporation of Operability and Safety in the Synthesis of Intensified Reactive and Extractive Separation Systems

lt's more than a job.

At Ascend Performance Materials, you'll have an opportunity to grow, learn, develop, contribute and give back.

We're a company committed to producing some of the world's best plastics, fibers and chemicals. Our products are not only innovative, they inspire innovation. And it's because we hire inspiring, smart and motivated people throughout the company.

Our people don't just work, they lead. They solve problems and make things better, from interns to executives.

Through our employee-led foundation our people contribute time and money to local causes. We focus on education, hunger, housing, military support and children's health.

If you're ready to grow, learn, develop, contribute and give back, we'll be on campus for recruiting. We're looking for engineering co-ops, interns and employees ready for an opportunity.

Learn more about Ascend by visiting **ascendmaterials.com/oncampus** or our LinkedIn page.

COULD YOU ENERGISE THE FUTURE OF ENERGY?

BE PART OF A BETTER FUTURE BE PART OF SHELL

shell.com/careers #makethefuture

Here. There. Everywhere.

Chemical Engineering Graduate Student Association

The Association of Former Students is the oldest organization serving Texas A&M University in support of the ever-growing Aggie Network. We are **HERE** for Aggies during their days as students and former students, **THERE** for Aggies as they make their way around the world and **EVERYWHERE** that the Aggie Network needs us to be.

SUPPORTING PROGRAMS | PROVIDING RESOURCES | CULTIVATING EXPERIENCES

BIG SOLUTIONS FOR A GROWING PLANET

Dow combines the power of science and technology to help address many of the world's most challenging problems. Working closely with our customers we deliver products and solutions that create value and competitive advantage while positively impacting the world we live in.

www.dow.com

®Trademark of The Dow Chemical Company © 2019

Texas A&M UNIVERSITY Texas A&M Energy Institute

Master of Science in Energy Certificate in Energy

The Texas A&M Energy Institute offers post-graduate academic programs that accelerate the evolution of students, professionals, and engineers into Energy Leaders. Employing three primary options: the **Master of Science in Energy**, **Graduate Certificate**, and the Thematic Course Clusters in Energy, students and professionals are introduced to the multiple interdisciplinary facets of energy ranging from an overview of energy technologies (fossil-based, renewable, and non-fossil based) to multi-scale energy systems engineering methods, to energy economics, law, security, policy, and societal impact.

The Texas A&M Energy Institute engages undergraduate and graduate students, postdoctoral associates, research staff, and faculty members toward the study and development of innovative technologies and policies for energy production and energy conservation. Special attention is paid to elucidating the complexity among the interacting components of energy, economics, law, public policy, and the environment. With 270 faculty affiliates from nine colleges and schools, more than 20 Texas A&M University departments, two Texas A&M University branch campuses, and two Texas A&M University System member institutions, along with a unique community of more than 450 doctoral students and postdoctoral fellows in the Texas A&M Energy Research Society, cutting-edge solutions are being realized through true interdisciplinary collaborations that will address the complexity and challenges of the world's energy future.

MAKING SAFETY SECOND NATURE

ABOUT THE CENTER

The Mary Kay O'Connor Process Safety Center is the world's foremost university-based process safety center. The center serves industry, government, academia and the public, is a resource in education and research, & provides service to all stakeholders. Over the past 20 years, the body of work created by the center has led to its inarguable recognition as an unbiased science-based organization focused on creating dialogue and consensus on difficult scientific topics, amongst all stakeholders. The guidance of a steering committee of consortium member companies and a technical advisory committee of industry expert ensures that center activities are relevant to the actual practice of process safety.

EDUCATION

Students pursuing doctoral degrees and master of science in safety engineering degrees under the auspices of the MKOPSC come from various fields of study, including chemical engineering, mechanical engineering, petroleum engineering and materials science and engineering.

ACADEMIC DEGREES AND CERTIFICATES

Master of Science in Safety Engineering (also offered via distance learning)

Safety Practice Certificate (for graduate and undergraduate students)

CONTINUING EDUCATION

Safety Practice Certificate (for professionals)
Continuing Education Courses (on site for professionals, 55 courses available)

INTERNSHIPS AND

- ABS Consulting
- BakerRisk
- BASE
- Baver
- BP
- ExxonMobil Corp. Huntsman KBR
- Mustang

DNV

- Shell Oil Co.
- Siemens
- Siemen

For more information contact psc.tamu.edu

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

2018 Department Fact Sheet

The Artie McFerrin Department of Chemical Engineering is one of the top rated chemical engineering departments in the world. In 2018, *U.S. News and World Report* ranked the undergraduate and graduate programs 13 and 12 respectively. It is also one of the largest, fully accredited chemical engineering programs in the country. The department has become a prolific chemical engineering research hub, with the faculty producing more than 240 refereed journal publications in 2018.

Located in the 205,000 square-foot, Jack E. Brown Chemical Engineering Building, the department provides its students and faculty members access to the latest resources, including 88 research and teaching facilities, six general classrooms, 13 conference rooms, and four computer laboratories.

Research

The Artie McFerrin Department of Chemical Engineering at Texas A&M University has faculty engaged in a wide breadth of studies ranging from highly applied research in the areas of biomass utilization, process safety and hydrocarbon processing to very fundamental research in nanotechnology, life sciences, process systems engineering and molecular simulation. The ultimate goal of the research is to positively impact society by providing new knowledge.

Department Research Areas

- Biomedicine | Biomolecules
- Biofuels | Biotechnology
- Catalysis and Reaction Engineering
- Complex Fluids | Microfluidics | Soft Matter
- Computational Chemical EngineeringEnergy

Department Head

M.Nazmul Karim | Professor | T. Michael O'Connor Chair II nazkarim@tamu.edu

- Environmental | Sustainability
- Materials | Microelectronics
- Multiscale Systems Engineering
- Nanotechnology
- Process Control and Systems Engineering

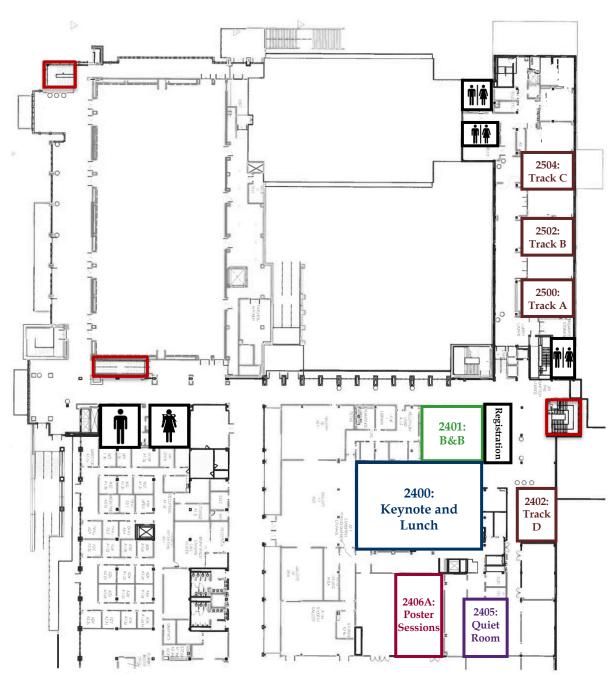
Enrollment

Total Enrollment	1,066
Undergraduate	835
Graduate	231
Master's	85
Ph.D.	146

Faculty

Total Faculty	40
Professors	14
Endowed Chairs	5
Endowed Professorships	6
Endowed Faculty Fellows	5
TEES Eminent Professors	3
Associate Professors	9
Assistant Professors	8
Lecturers/Senior Lecturers	1
Professors of Practice	2
Senior Professors	3
Referred Journal Publications	240

Rankings



3 Undergraduate Program (U.S. News & World Report, 2018)

Graduate Program (*U.S. News & World Report*, 2018)

engineering.tamu.edu/chemical

BUILDING LAYOUT

Memorial Student Center (MSC) 2nd Floor

2400: Keynote Address an 2401: Breakfast & Breaks (B&B) 2406A: Poster Sessions 2500: Track A: Advanced Materials & Bioengineering 2502: Track B: Energy 2504: Track C: Process Engineering & Optimization 2402: Track D: Process Safety 2405: Quiet Room Emergency Exits Marked

Artie McFerrin Department of CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

5 ANNUAL RESEARCH SYMPOSIUM Friday, March 9, 2018 | 8:00 am - 3:30 pm | MSC, Texas A&M University

TABLE OF CONTENTS

Sponsors	2
Welcome	3
Schedule	4
Keynote Address	5
Oral Presentations - Morning Session	6
Oral Presentations – Afternoon Session	7
Poster Session I	8
Poster Session II	10
Building Layout	16

SPONSORS

WELCOME

On behalf of the organizing committee we extend you a warm welcome to College Station and the 5th Annual Research Symposium. The purpose of the symposium is to showcase the research conducted in the department and provide students with an opportunity to present their research to industrial representatives. We gratefully acknowledge the sponsorship provided by Eastman Chemical Company, Shell, The Association of Former Students, The Dow Chemical Company, and The Kaneka Foundation; also, the donations from BASF and the Texas A&M Student Engineering Council. This symposium represents the ideal environment for the exchange of ideas to aid in the advancement of science and technology. We wish all the participants a productive and enjoyable event.

ADVISORY COMMITTEE

Dr. Arul Jayaraman	Dr. Perla Balbuena	Dr. Jodie Lutkenhaus	Dr. Katy Kao	
ORGANIZING COM	MITTEE			
Shaoyang Wang	Edna Mende	ez]	Denis Su-Feher	
Luis Camacho	Nilesh Ado	2	Harold Escobar	
Pranav Bagaria	Hallie Graha	ım	Cassio Brunoro Ahumada	
Vijay Ravisankar	Jiayong Zh	u Pı	urvali Chaudhari	
Tushar Goel	Jacob Gruen	er	Azhar Ali	
Yu-Ching Chang	Mohammed Saad	Faizan Ch	ristopher Gordon	
Patrick Lathrop	Jianping L	i		
CONTACT US EMAIL: chegsa@chegsa.tamu.edu				

WEBSITE: <u>https://www.chegsatamu.com/</u>

LINKEDIN: <u>Texas A&M Chemical Engineering Graduate Student Association (ChEGSA)</u>

SCHEDULE

Time	Event				
8:00 - 8:45		Breakfast and Regis	stration (MSC 2401)		
8:45 - 9:00		Opening Rema	rks (MSC 2400)		
9:00 - 9:30	k	Keynote Address by Dr. Sc	ott Armentrout (MSC	C 2400)	
9:30 - 9:40		Trans	sition		
	Track A- MSC 2500	Track B- MSC 2502	Track C- MSC 25	04	Track D- MSC 2405
	Advanced Materials	Bioengineering and Polymers	Process System: Engineering		Computational Modeling and Process Safety
9:40 - 10:00	 Febrian Hillman 	Michelle L. Olson	Burcu Be	ykal 🔵	Behnaz Rahmani
10:00 - 10:20	L. Eric Zhang	Jyot Antani	 Baris Bu 	rnak 🔵	Pritishma Lakhe
10:20 - 10:40	🛑 Tianyu Kelvin Yuan	 Dongheon Lee 	Jianpin	ng Li 🔍	C. Doga Demirhan
10:40 - 10:50	Break (MSC 2401)				
10:50 - 11:50	Poster Session I (MSC 2300A)				
11:50 – 1:00	Lunch and Networking (MSC 2400)				
1:00 - 2:00	Poster Session II (MSC 2300A)				
2:00 - 2:10		Break (M	SC 2401)		
2:10 - 2:30	Hyosung An	 Yi-Yun Timothy Tsao 	 Eric B 	ohac 🔵	Ankita Taneja
2:30 - 2:50	Smit A. Shah	 Pilar Suarez-Martinez 	• Justin	Katz 🔵	Srikanth Panyaram
2:50 - 3:10	 Glenn Zeng 	Yanpu Zhang	• Spyridon D. Te	solas 🔵	Ashwin Agarwal
3:10 - 3:20	Transition				
3:20 - 3:30	Closing Remarks and Awards (MSC 2400)				
Research Focu	IS Advanced Material	s 🕒 Bioen	gineering	• Pr	ocess Safety
	 Process Systems Engineering Polymers Computational Modeling 				

KEYNOTE ADDRESS - Dr. Scott Armentrout

Scott Armentrout, Ph.D. Director, External Innovation, Eastman Chemical Company

Innovation in the Chemical Industry: Enhancing the Quality of Life in a Material Way

Scott Armentrout is the Director of External Innovation for Eastman Chemical Company. Armentrout has responsibility for the identification and coordination of collaborative growth initiatives between various academic and industrial agencies and Eastman. Armentrout was previously Manager, Applications Innovation for Eastman Chemical Company. In that position, he had leadership responsibilities for the establishment of an interdisciplinary technology organization within Corporate Innovation to identify new growth opportunities for Eastman.

Armentrout joined Eastman in 1999 as a synthetic polymer chemist. Throughout his career, he has held several technology and people leadership positions of increasing level of responsibility across multiple technology and market platforms including polyester product and process development, cellulose ester product development, electronic chemicals innovation, and front end innovation.

ORAL PRESENTATIONS – Morning Session				
T'	Track A MSC 2500	Track B MSC 2502	Track C MSC 2504	Track D MSC 2405
Time	Advanced Materials	Bioengineering and Polymers	Process Systems Engineering	Computational Modeling and Process Safety
9:40 - 10:00	Rapid One-Pot Microwave Synthesis of Mixed Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations	Relative Abundance of <i>Candida Albicans</i> and <i>Candida Glabrata</i> in <i>in</i> <i>vitro</i> Co-culture Biofilms Impacts Biofilm Structure and Formation	Optimal Design of Energy Systems Using Constrained Grey-Box Multi-objective Optimization	Adsorption of Carbon on Partially Oxidized Cu Surfaces - Applications to Graphene Synthesis
	<u>Febrian Hillman</u> , Jordan Brito, and Hae-Kwon Jeong	<u>Michelle L. Olson</u> , Arul Jayaraman, and Katy C. Kao	<u>Burcu Beykal</u> , Fani Boukouvala, Christodoulos A. Floudas, and Efstratios N. Pistikopoulos	<u>Behnaz Rahmani Didar</u> and Perla B. Balbuena
10:00 - 10:20	Micro-encapsulation with Nanoplatelet Surfactant	Modulation of Ultrasensitive Signaling in Bacteria by Viscous Load on Flagellar Motor	Integration of Design, Scheduling, and Control of Combined Heat and Power Systems: A Multiparametric Programming Based Approach	Calorimetric Study of Graphene Oxide Thermal Stability
	<u>L. Eric Zhang</u> and Zhengdong Cheng	<u>Jyot Antani</u> and Pushkar Lele	<u>Baris Burnak</u> , Justin Katz, Nikolaos A. Diangelakis, and Efstratios N. Pistikopoulos	<u>Pritishma Lakhe</u> , Devon Kulhanek, Wanmei Sun, Bin Zhang, Micah J. Green, and M. Sam Mannan
10:20 - 10:40	Multifunctional Charge Transfer-Based Supramolecular Materials with Tunable Thermochromism	Stochastic Modeling of CTB-GM1 Binding Kinetics	Simultaneous Process Network Synthesis and Process Intensification Using Block Superstructure	Toward Optimal Synthesis of Renewable Ammonia and Methanol Processes
	<u>Tianyu Kelvin Yuan,</u> Lei Fang, and Mark A. Olson	<u>Dongheon Lee</u> , Alec Mohr, Joseph S. Kwon, and Hung-Jen Wu	<u>Jianping Li</u> , Salih Emre Demirel, and M. M. Faruque Hasan	<u>C. Doga Demirhan,</u> William W. Tso, and Efstratios N. Pistikopoulos
10:40 - 10:50		Break (N	ISC 2401)	·
10:50 - 11:50		Poster Session	I (MSC 2300A)	
11:50 - 1:00		Lunch and Netwo	orking (MSC 2400)	
1:00 - 2:00		Poster Session	II (MSC 2300A)	
2:00 - 2:10	Break (MSC 2401)			
				6

ORAL PRESENTATIONS - Afternoon Session				
Time	Track A MSC 2500	Track B MSC 2502	Track C MSC 2504	Track D MSC 2405
	Advanced Materials	Bioengineering and Polymers	Process Systems Engineering	Computational Modeling and Process Safety
2:10 - 2:30	Surface-Agnoistic Highly Stretchable and Bendable Conductive MXene Multilayers	Synthetic, Functional Thymidine-Derived Polydeoxyribo- nucleotide Analogues from a Six-membered Cyclic Phosphoester	Shale Gas Techno- economic Analysis: Designing Separation Units to Handle Feedstock Variability	Improved Flare Radiation Criteria in Terms of Solar Radiation Contribution
	<u>Hyosung An</u> , Touseef Habib, Smit Shah, Huili Gao, Miladin Radovic, Micah J. Green, and Jodie L. Lutkenhaus	<u>Yi-Yun Timothy Tsao,</u> Travis H. Smith, and Karen L. Wooley	<u>Eric Bohac</u> , Mahmoud El- Halwagi, and Debalina Sengupta	<u>Ankita Taneja</u> , Delphine Laboureur, Bin Zhang, and M. Sam Mannan
2:30 - 2:50	3D Graphene Oxide Gel Assembly: Effects of Nanosheet Morphology and Ammonia on Gel Properties and Their use as Structural Electrodes for Energy Storage	Polymer-Clay Nanocomposite Coatings as Efficient, Environment-Friendly Surface Pretreatments for Aluminum Alloy 2024-T3	Model Approximation in Multiparametric Optimization and Control - A Computational Study	Predicting Influence of Packing Shape and Loading Methodology upon Fixed-Bed Structures
	<u>Smit A. Shah</u> , Dorsa Parviz, Morgan G. Odom, Wanmei Sun, Devon Kulhanek, and Micah J. Green	<u>Pilar C. Suarez-Martinez,</u> Jerome Robinson, Hyosung An, Robert C. Nahas, Douglas Cinoman, and Jodie L. Lutkenhaus	<u>Justin Katz</u> , Nikolaos A. Diangelakis, and Efstratios N. Pistikopoulos	<u>Srikanth Panyaram</u> and Benjamin Wilhite
2:50 - 3:10	High Efficient Oil- Water Separation using Surface-Programmable Membranes	Water and Ion Pairing Universally Influence the Glass Transition of Polyelectrolyte Complexes	Systematic Analysis and Optimization of Water-Energy Nexus	A Sustainable Process Design Approach for On-purpose Propylene Production and Intensification
	<u>Glenn Zeng</u> , Lecheng Zhang, Dali Huang, and Zhengdong Cheng	<u>Yanpu Zhang</u> , Piotr Batys, Joshua T O'Neal, Fei Li, Maria Sammalkorpi, and Jodie L. Lutkenhaus	<u>Spyridon D. Tsolas</u> , M. Nazmul Karim, and M. M. Faruque Hasan	<u>Ashwin Agarwal</u> , Debalina Sengupta, and Mahmoud M. El-Halwagi
3:10 - 3:20 3:20 - 3:30				
3:20 - 3:30 Closing Remarks and Awards (MSC 2400) 7				

POSTER SESSION I MSC 2300A 10:50 A.M. - 11:50 A.M.

	10:50 A.M. – 11:50 A.M.				
Adva	Advanced Materials				
P.1	Polymerized Ionic Liquid Triblock Terpolymers: Synthesis and Characterization				
	<u>Patrick M. Lathrop</u> and Yossef A. Elabd				
P.2	Aramid Nanofiber/Functionalized Graphene Composite Electrodes for Structural Energy and				
	Power				
	<u>Paraskevi Flouda</u> , Dimitris C. Lagoudas, and Jodie L. Lutkenhaus				
P.3	Radio Frequency Curing of Preceramic Polymers Loaded with Nano-fillers to Silicon Carbide				
	Preforms				
D 4	<u>Nutan Patil</u> , Micah J. Green and Mohammad Saed				
P.4	Approach to Retard Oxidation during Processing of Colloidal Ti ₃ C ₂ MXenes				
DF	<u>Touseef Habib</u> , Smit Shah, Yexiao Chen, Wanmei Sun, Miladin Radovic, and Micah J. Green				
P.5	<i>Ab-initio</i> Investigation of Dimethyl Disulfide as an Additive for Lithium-Sulfur Batteries <i>Ethan P. Kamphaus and Perla B. Balbuena</i>				
P.6	<u>Etrun P. Kumphuus</u> und Perla B. Balbuena Ferrocene-Based Redox Switches for Reversible Single-Molecule Magnet Behavior in				
1.0	Dysprosium(III) and Erbium(III) Bis-diamidoferrocene Complexes				
	<u>Courtney M. Dickie, Alexander L. Laughlin, Joshua D. Wofford, Nattamai S. Bhuvanesh, and Michael</u>				
	Nippe				
	ess Systems Engineering				
P.7	Systematic Process Intensification Using Building Blocks				
	Salih Emre Demirel, Jianping Li, and M. M. Faruque Hasan				
P.8	A Novel Derivative-Free Optimization Method on Single Dimension Projection				
DO	<u>Ishan Bajaj</u> and M. M. Faruque Hasan				
P.9	Modeling, Simulation and Optimization of Hybrid Adsorption-Reaction Systems				
D 10	<u>Akhil Arora,</u> Ishan Bajaj, Shachit S. Iyer, and M. M. Faruque Hasan Toward a Systematic Framework for the Synthesis of Safely Operable Process Intensification				
P.10	Toward a Systematic Framework for the Synthesis of Safely Operable Process Intensification				
	Systems Yuhe Tian, M. Sam Mannan, and Efstratios N. Pistikopoulos				
Phari	maceuticals and Bioengineering				
P.11	Effect of Carbon Dioxide-Sustained Adsorption using Ion-Exchange Resin on Mixed-Acid				
	Fermentation				
	<u>Haoran Wu,</u> Samarpita Roy, Kefan Yang, and Mark Holtzapple				
Proce	ss Safety Engineering				
P.12	Fire Incidents in Offshore Oil and Gas Rigs: Analyses of Incident Investigation Reports				
	Zohra Halim, Sunder Janardanan, Tatiana Flechas and M. Sam Mannan				
P.13	Calorimetry Studies of Benzoyl Peroxide				
	Yueqi Shen and M. Sam Mannan				
	8				

- **P.14** Safety Assessment of Secondary Alcohol Oxidation with Hydrogen Peroxide <u>Yue Sun, Lei Ni, Maria Papadaki, Wen Zhu, Juncheng Jiang and M. Sam Mannan</u>
- P.15 Studying the Effects of Obstacle Configuration and Fire Suppressants on Flame Propagation Regimes

Cassio B. Ahumada, Eric Petersen, and M. Sam Mannan

Microelectronics and Nanotechnology

- **P.16** Predicting the Stability of Pt^{II}-Based Molecular Gyroscope Isomers <u>Andreas Ehnbom</u>, Lisa M. Pérez, Michael B. Hall, and John A. Gladysz
- P.17 Study on the Interfacial Interaction between Carbon Nanotubes and Catalyst, and the Effect in Tube Diameter

Mauricio Carvajal Diaz and Perla B. Balbuena

POSTER SESSION II MSC 2300A 1:00 P.M. - 2:00 P.M.

	1:00 P.M. – 2:00 P.M.
Advar	nced Materials
P.18	Electrochemical Investigations of Electroactive Redox Polymer for Use in Energy Storage
	Devices
	<u>Kasturi Sarang,</u> Hysoung An, Andrea Miranda, Jodie L. Lutkenhaus, and Rafael Verduzco
P.19	Saturated N-heterocyclic Cationic Polymers: Synthesis and Stability
	<u>Rui Sun</u> and Yossef A. Elabd
P.20	High-Resolution Scalable Propylene/Propane Separation for ZIF-8 Polycrystalline
	Membranes on Ceramic Tubular Support
D. 61	<u>Jingze Sun</u> and Hae-Kwon Jeong
P.21	Application of Electrochemical Impedance Spectroscopy for the Study of Degradation
	Behavior of Nanowire Thin Films in Simulated Industrial Environments
D 66	<u>Pranav Kannan,</u> M. Sam Mannan, and Sreeram Vaddiraju
P.22	Cone Calorimeter Analysis of Flame Retardant Poly(styrene) Nanocomposite
D 00	Lubna Ahmed, Bin Zhang, Ruiqing Shen, Zhengdong Cheng, Qingsheng Wang, and M. Sam Mannan
P.23	Combined High Stretchability and Gas Barrier in Hydrogen-Bonded Multilayer Nanobrick Wall Thin Films
	<u>Shuang Qin,</u> Yixuan Song, Michael E. Floto, and Jaime C. Grunlan
Proce	ss Systems Engineering
P.24	Advancing the Production of Olefins and Aromatics from Natural Gas via Methanol:
	Chemical Looping for Syngas Generation
	William W. Tso, C. Doga Demirhan, Alexander M. Niziolek, Onur Onel, Christodoulos A. Floudas, and
	Efstratios N. Pistikopoulos
P.25	Fault Detection and Diagnosis of Continuous Processes via Non-linear Support Vector
	Machine based Feature Selection
	<u>Melis Onel</u> , Chris A. Kieslich, Yannis A. Guzman, Christodoulos A. Floudas, and Efstratios N.
D 9(Pistikopoulos
P.26	Multi-scale Optimization of a Novel Separation and Storage Technology for Natural Gas <u>Shachit S. Iyer</u> , Salih E. Demirel_and M. M. Faruque Hasan
P.27	<u>Sincent 5. iyer, Such E. Demirer</u> und Wi. Furuque Husun Multi-objective Stochastic Optimization for Preventive Maintenance Planning in Chemical
1.2/	Plants
	<u>Christopher Gordon,</u> Monir Ahammad, and M. Sam Mannan
Safatz	
	v Engineering
P.28	Identify Weak Signals Using Data Mining Techniques Mengxi Yu, Noor Quddus, and M. Sam Mannan
P.29	Mapping Review of Reactive Chemicals Hazards Research
1.29	Hallie Graham and M. Sam Mannan
P.30	Developing Probabilistic Barrier Failure Models to Predict Kicks while Drilling
1.50	<u>Nafiz Tamim,</u> Delphine Laboureur, A. Rashid Hasan and M. Sam Mannan
	<u>10</u>

P.31	Thermal Decomposition of Mono-Nitrated Toluene (MNT) with Additives
	<u>Wen Zhu</u> and Chad V. Mashuga

P.32 Optimization of Flame Retardants on Commercial Aircrafts <u>Mazdak Mina</u> and M. Sam Mannan

Energy Systems

P.33 Formation of Multi-layer Graphene Nanosheets with Strong Sulfur-Carbon Interaction and Enhanced Sulfur Reduction Zones for Lithium-Sulfur Battery Cathodes Saul Perez Beltran and Perla B. Balbuena

Environmental Engineering

P.34 Magnetically Driven Functionalized Nanoplatelets Pickering Emulsion for Removal of Oil Contaminants from Water

Dali Huang, Minxiang Zeng, Lecheng Zhang, Arun Sabapathy, Janet Sajan, and Zhengdong Cheng

Pharmaceuticals and Bioengineering

P.35 Microfluidic Microbiologically Influenced Corrosion (M-MIC) Models <u>Susmitha Purnima Kotu</u>, M. Sam Mannan and Arul Jayaraman

At Eastman, we are driven to deliver materials that enhance the quality of life in a material way.

Chances are one of our products has touched your life today. We're in transportation, building and construction, consumer durables, medical products, food and feed (just to name a few places!). Using a material approach, our teams are committed to creating solutions to problems we face. For example, whether it's improving our safety and comfort through advanced Saflex® acoustic interlayers or enhancing weathering and durability and reducing VOCs through the use of Eastman Tetrashield™ protective resin systems, our materials provide solutions to problems we encounter every day.

We look forward to hearing about your challenges and seeing how we might work together.

Let's talk innovation. Let's talk about careers where you can make a material difference. Learn more at **eastman.com/careers**.

© 2018 Eastman Chemical Company. Eastman brands referenced herein are trademarks of Eastman or one of its subsidiaries or are being used under license. The © symbol denotes registered trademark status in the U.S.; marks may also be registered internationally. EMN-CC-6534 2/18

COULD YOU ENERGISE THE FUTURE OF ENERGY?

shell.com/careers #makethefuture


Here. There. Everywhere.

Chemical Engineering Graduate Student Association

The Association of Former Students is the oldest organization serving Texas A&M University in support of the ever-growing Aggie Network. We are **HERE** for Aggies during their days as students and former students, **THERE** for Aggies as they make their way around the world and **EVERYWHERE** that the Aggie Network needs us to be.

SUPPORTING PROGRAMS | PROVIDING RESOURCES | CULTIVATING EXPERIENCES

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

2017 **Department Fact Sheet**

The Artie McFerrin Department of Chemical Engineering is one of the top rated chemical engineering departments in the world. It is also one of the largest, fully accredited chemical engineering programs in the country. The department has become a prolific chemical engineering research hub, with the faculty producing more than 200 refereed journal publications in 2017.

Located in the 205,000 square-foot, Jack E. Brown Chemical Engineering Building, the department provides its students and faculty members access to the latest resources, including 88 research and teaching facilities, six general classrooms, 13 conference rooms, and four computer laboratories.

Research

The Artie McFerrin Department of Chemical Engineering at Texas A&M University has faculty engaged in a wide breadth of studies ranging from highly applied research in the areas of biomass utilization, process safety and hydrocarbon processing to very fundamental research in nanotechnology, life sciences, process systems engineering and molecular simulation. The ultimate goal of the research is to positively impact society by providing new knowledge.

Department Research Areas

- Biomedicine | Biomolecules
- Biofuels | Biotechnology
- Catalysis
- Complex Fluids | Microfluidics | Soft Matter
- **Computational Chemical** Engineering
- Energy

Department Head

- Environmental | Sustainability
- Materials | Microelectronics
- Multiscale Systems Engineering
- Nanotechnology
- Process Safety | Process Systems Engineering
- **Reaction Engineering**
- Thermodynamics

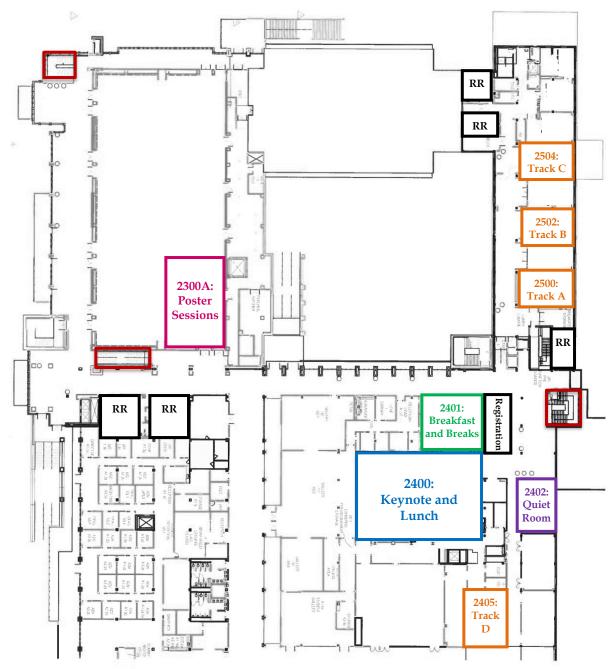
M.Nazmul Karim | Professor | T. Michael O'Connor Chair II nazkarim@tamu.edu

Enrollment

Total Enrollment	1,029
Undergraduate	793
Graduate	236
Master's	96
Ph.D.	140

Faculty

F


Total Faculty	36
Professors	13
Endowed Chairs	5
Endowed Professorships	7
Associate Professors	7
Assistant Professors	6
Research Assistant Professors	1
Lecturers/Senior Lecturers	4
Professors of Practice	2
Senior Professors	3
Referred Journal Publications	251

Student Gender Diversity

emale	39%
Male	61%

engineering.tamu.edu/chemical

BUILDING LAYOUT

Memorial Student Center (MSC) 2nd Floor

2400: Keynote Address and Lunch Reception 2401: Breakfast and Breaks 2300A: Poster Sessions 2500: Track A 2502: Track B 2504: Track C 2405: Track D 2402: Quiet Room Emergency Exits Marked

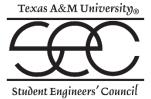
Artie McFerrin Department of CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

th Chemical Engineering Graduate Student Association ANNUAL RESEARCH SYMPOSIUM Friday, March 10, 2017 | 8:00 am - 5:30 pm | MSC, Texas A&M University

TABLE OF CONTENTS

SPONSORS	. 2
WELCOME	3
ADVISORY COMMITTEE	3
ORGANIZING COMMITTEE	3
SCHEDULE	. 4
KEYNOTE ADDRESS - Dr. Angela Summers	. 5
INDUSTRIAL SPEAKER – Dr. Cesar Granda	6
INDUSTRIAL SPEAKER – Dr. Carl Willis	7
INDUSTRIAL SPEAKER – Dr. Leo H. Chiang	. 8
Track A – MSC 2500	10
Track B – MSC 2502	10
Track C – MSC 2504	11
Track D – MSC 2405	
Poster Session I	12
Poster Session II	14

SPONSORS



Bronze

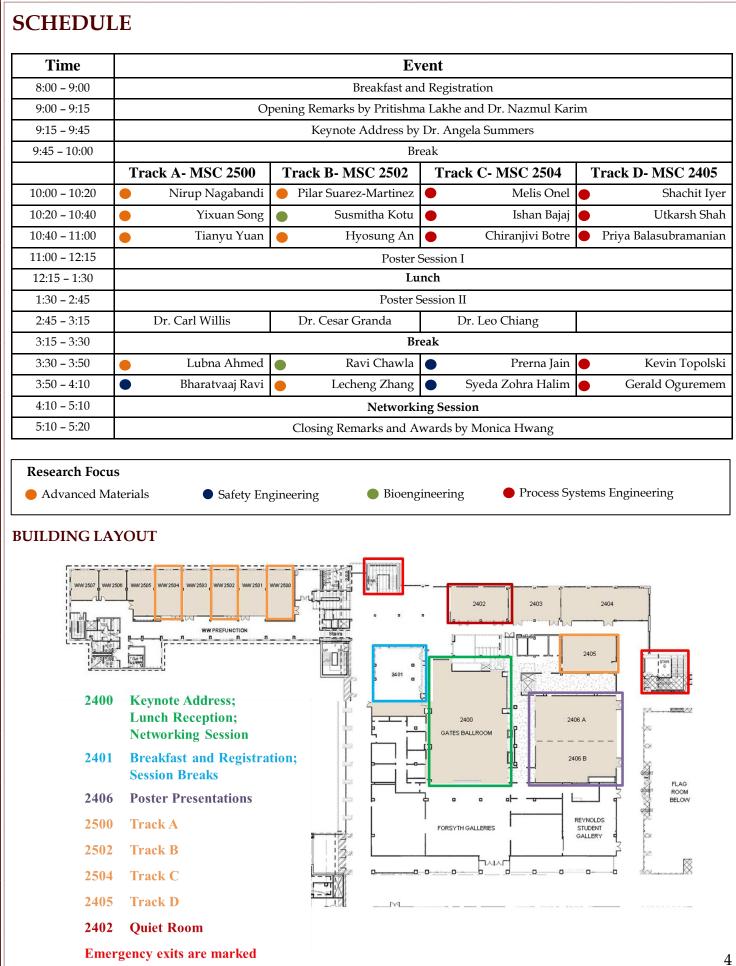
Silver

Dr. Jim Harris

WELCOME

On behalf of the organizing committee we extend you a warm welcome to College Station and the 4th Annual Research Symposium. The purpose of the symposium is to showcase the research conducted in the department and provide students with an opportunity to present their research to industrial representatives. We gratefully acknowledge the sponsorship provided by Ascend Performance materials, Shell, Dow, Texas A&M Division of Research, The Kaneka Foundation, Dr. Jim Harris, BASF and Texas A&M Student Engineering Council. This symposium represents the ideal environment for the exchange of ideas to aid in the advancement of science and technology. We wish all the participants a productive and enjoyable event.

ADVISORY COMMITTEE


Dr. Arul Jayaraman	Dr. M. Sam Mannan	Dr. Homa Khosravian	Dr. Micah Green
ORGANIZING CO	MMITTEE		
Pritishma Lakhe	Monica Hwar	ıg Be	ehnaz Rahmani
Patrick Lathrop	Shaoyang Wa	ng	Edna Mendez
Luis Camacho	Nilesh Ade	Ν	ikhil Mayadeo
Ankita Taneja	Shiqi Chen	Μ	Ielanie Desessa

Christopher Gordon Hallie Graham Cassio Brunoro Ahumada

Jiayong Zhu

Denis Su-Feher

CONTACT USEMAIL:chegsa@chegsa.tamu.eduWEBSITE:https://www.chegsatamu.com/LINKEDIN:@tamuChegsa

KEYNOTE ADDRESS - Dr. Angela Summers

Dr. Angela Summers, Ph.D. President, SIS-TECH Solution, LP

From Sci-fi Nerd to Engineer to Vintner - a chemical engineer's journey

Dr. Angela Summers started SIS-TECH over 15 years ago with \$1,000 and a desire to stop process safety incidents. With over 100 employees and contractors, SIS-TECH has become a respected and trusted provider of services and systems for process safety and critical control applications of automation systems. She has over 30 years of experience in instrumentation and controls, process design, and environmental pollution controls. Dr. Summers holds a PhD in chemical engineering. She was named an Engineering Fellow of the University of Alabama and a Centennial Fellow of its chemical engineering department (top 100 graduates in 1st 100 years of the program).

INDUSTRIAL SPEAKER - Dr. Cesar Granda

Dr. Cesar Granda, Ph.D. CTO, Earth Energy Renewables

Being Pragmatic About Caring for the Environment through Chemical Engineering

Certain scientific topics can be the subject of endless political controversy despite the fact that scientists and engineers should be above politics. Caring for the environment happens to be one of such topics, where the government can take very different approaches depending on who is in charge. As chemical engineers, we have the opportunity to deliver pragmatism to the debate by offering profitable solutions to the problem, rather than approaches that many times can be a burden on the economy and are not sustainable in the long run.

Earth Energy Renewables is developing a technology, which can sustainably attain a profitable outcome while solving environmental problems and caring for the environment. This technology, which has its roots at the Texas A&M University Chemical Engineering Department, employs Biotechnology and conventional Chemical Engineering. The process uses a mixed consortium of naturally occurring microorganisms to ferment or digest any biodegradable material, such as organic wastes (e.g., organic garbage, wastewater, organic effluents, and agricultural residues) or crops (e.g., corn, sorghum, grass) and produce valuable chemical products. These chemical products, which are organic acids (e.g., acetic, propionic, butyric acids) are recovered from the fermentation effluent and purified. As such, these acids can be commercialized into a well-established market allowing the company to become profitable and self-sufficient. These acids are also well-established intermediates to produce other valuable chemical products, such as ketones, esters, primary and secondary alcohols, and even biofuels, such as gasoline and jet fuel, which represent a good opportunity for substantial growth and sustainability as well as for a significant positive impact on the environment.

INDUSTRIAL SPEAKER - Dr. Carl Willis

Dr. Carl Willis, Ph.D. Research Fellow, Kraton Polymers

Ion Containing Block Copolymers

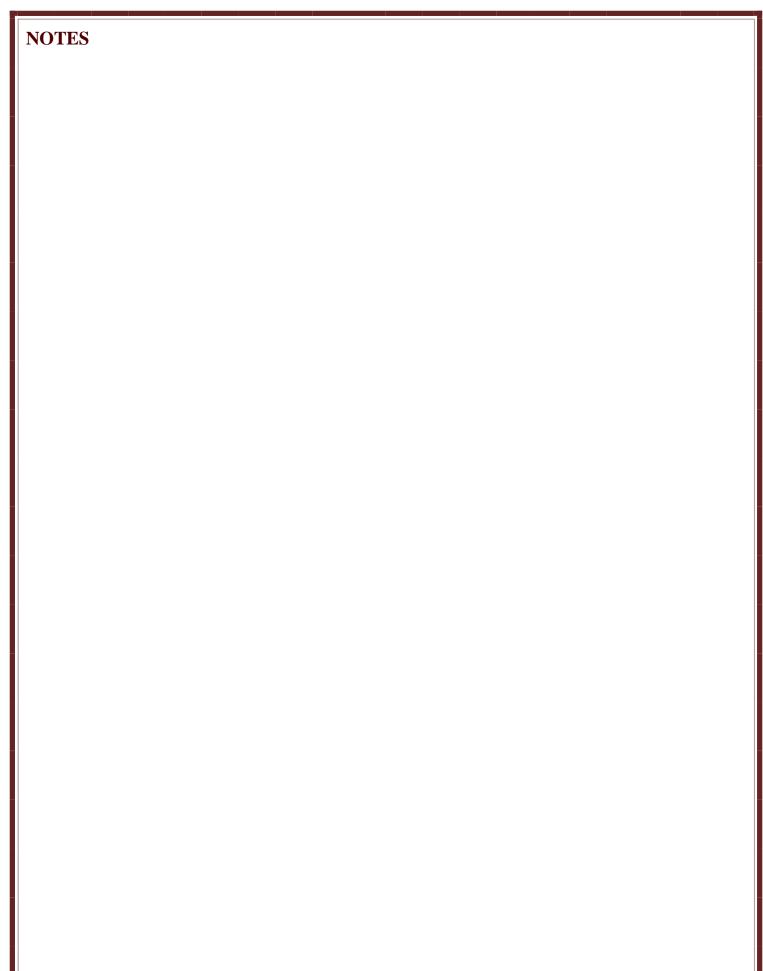
In 2010, Kraton Polymers started producing a grade line of ion containing, styrenic block copolymers under the tradename of Nexar® Polymers. The polymers are made by a 3 step process. In the first step, a 5 block copolymer is prepared by a living anionic polymerization technology; the living anionic polymerization method affords block copolymer segments that are nearly monodispersed in molecular weight. In the second step, the polymer is selectively hydrogenated to remove C=C unsaturation. In the final step, the pentablock copolymer is selectively sulfonated in the polystyrene block (center segment).

The sulfonated polystyrene segment in these polymers gives the material unique structure and unusual performance features. Solutions of these polymers tend to be structured which gives rise to the interesting rheological properties observed for the solutions.

The Nexar Polymer solutions have been cast into membranes which have found utility in energy recovery ventilation applications.

Additionally, the Nexar Polymer solutions have also been printed onto fabrics and the resulting coated fabrics made into garments that provide an improved micro-climate for the wearer. This technology provides a mechanism for cooling the person wearing the garment when working in a hot climate.

This presentation will focus on the science that supports these technologies.


INDUSTRIAL SPEAKER - Dr. Leo H. Chiang

Dr. Leo H. Chiang, Ph.D. Associate Technology Director, The Dow Chemical Company

Advances in Big Data Analytics at The Dow Chemical Company

In the Big Data era, Dow is collecting large volume of data (in the order of terabytes each day) of various kinds such as process data, experimental lab data, business transaction data, image data, and text data. While these data present a unique opportunity to improve process understanding and bring value to Dow, it is often challenging to use the right data and right tools to make the right decisions in real-time. This talk highlights recent advancements in the big data analytics journey at Dow in the areas of Enterprise Manufacturing Intelligence, multivariate analysis, on-line fault detection, inferential sensors, and batch data analytics.

Oral Presentations

Track A – MSC 2500

Track	Morning	Presentation
A1	10:00 - 10:20	SILVER METAL-ORGANIC-INORGANIC COMPOSITES AS THERMAL INTERFACE MATERIALS <u>Nirup Nagabandi</u> , Cengiz Yegin, Jun Kyun Oh and Mustafa Akbulut
A2	10:20 - 10:40	HIGH OXYGEN GAS BARRIER IN MULTILAYER THIN FILMS THROUGH PH MANIPULATION OF MONTMORILLONITE CLAY NANOPLATELETS <u>Yixuan Song</u> , David A. Hagen and Jaime C. Grunlan
A3	10:40 - 11:00	VERSATILE THERMOCHROMIC SUPRAMOLECULAR MATERIALS BASED ON CHARGE TRANSFER INTERACTIONS Tianyu Yuan, Mariela Vazquez, Mark A. Olson and Lei Fang

Track	Afternoon	Presentation	
Industry	2:45 - 3:15	ION CONTAINING BLOCK COPOLYMERS Dr. Carl Willis, Research Fellow, Kraton Polymers	
A4	3:30 - 3:50	FLAMMABILITY STUDIES BY CONE CALORIMETER ANALYSIS OF SILICA CROSS-LINKED POLY (METHYL METHACRYLATE) Lubna Ahmed, Ruiqing Shen, Logan Hatanaka, Bin Zhang, Sam Mannan, Zhengdong Cheng and Qingsheng Wang	
A5	3:50 - 4:10	STUDY OF FACTORS THAT AFFECT DUST EXPLOSION CHARACTERISTICS OF FIBROUS DUST MATERIALS <u>Bharatvaaj Ravi</u> , M. Sam Mannan and Chad Mashuga	

Track B – MSC 2502

Track	Morning	Presentation
B1	10:00 - 10:20	SPRAY-ON POLYMER-CLAY MULTILAYERS AS A SUPERIOR ANTICORROSION METAL PRETREATMENT <u>Pilar C. Suarez-Martinez</u> , Jerome Robinson, Hyosung An, Robert C. Nahas, Douglas Cinoman and Jodie L. Lutkenhaus
B2	10:20 - 10:40	MODIFIED MICROFLUIDIC FLOW SYSTEM FOR ASSESSMENT OF MICROBIOLOGICALLY INFLUENCED CORROSION Susmitha Purnima Kotu, Sam Mannan and Arul Jayaraman
В3	10:40 - 11:00	CONDUCTING BLOCK COPOLYMER BATTERY ELECTRODE BINDERS COMPARED AGAINST THEIR HOMOPOLYMER BLEND ANALOGS <u>Hyosung An,</u> Xiaoyi Li, Cody Chalker, Maria Stracke, Rafael Verduzco and Jodie L. Lutkenhaus

Track	Afternoon	Presentation	
Industry	2:45 - 3:15	BEING PRAGMATIC ABOUT CARING FOR THE ENVIRONMENT THROUGH CHEMICAL ENGINEERING Dr. Cesar Granda, CTO, Earth Energy Renewables	
B4	3:30 - 3:50	TORQUE-DEPENDENT MOTOR REMODELING AND MECHANOSENSING IN E. COLI <u>Ravi Chawla</u> , Katie M. Ford and Pushkar P. Lele	
B5	3:50 - 4:10	NOVEL JANUS NANOPLATELETS FOR ENHANCED OIL RECOVERY Lecheng Zhang, Mingxiang Zeng and Zhengdong Cheng	

Track C – MSC 2504

Track	Morning	Presentation
C1	10:00 - 10:20	BIG DATA APPROACH TO FAULT DETECTION AND DIAGNOSIS IN BATCH PROCESSES USING NONLINEAR SVM-BASED FEATURE SELECTION Melis Onel, Chris A. Kieslich, Yannis A. Guzman Christodoulos A. Floudas and Efstratios N. Pistikopoulos
C2	10:20 - 10:40	NOVEL METHOD FOR DERIVATIVE-FREE OPTIMIZATION BASED ON PARAMETRIC APPROACH Ishan Bajaj and M. M. Faruque Hasan
C3	10:40 - 11:00	PROCESS MONITORING OF NONLINEAR INDUSTRIAL PROCESSES USING MULTISCALE REPRESENTATION OF IMPROVED KERNEL PARTIAL LEAST SQUARE (KPLS) TECHNIQUE Chiranjivi Botre, Majdi Mansouri, Mohamed N. Nounou, Hazem N. Nounou and M. Nazmul Karim

Track	Afternoon	Presentation	
Industry	2:45 - 3:15	ADVANCES IN BIG DATA ANALYTICS AT THE DOW CHEMICAL COMPANY Dr. Leo H. Chiang, Associate Technology Director, Dow	
C4	3:30 - 3:50	RESILIENCE-BASED LOSS OF CONTAINMENT (LOC) EVENTS PREDICTION ANALYSIS FOR POLY VINYL CHLORIDE PROCESS SYSTEM: UNCERTAINTY QUANTIFICATION <u>Prerna Jain</u> and M. Sam Mannan	
C5	3:50 - 4:10	CUMULATIVE RISK ASSESSMENT MODEL TO DETERMINE INCREASED RISK DUE TO IMPAIRED BARRIERS <u>S. Zohra Halim</u> and M. Sam Mannan	

Track D – MSC 2405

Track	Morning	Presentation	
D1	10:00 - 10:20	DESIGN AND OPTIMIZATION OF MODULAR TECHNOLOGY FOR INTEGRATED CARBON CAPTURE & CONVERSION OF CO2 USING METHANE SOURCES Shachit S. Iyer, Ishan Bajaj, Priyadarshini Balasubramanian and M. M. Faruque Hasan	
D2	10:20 - 10:40	AN IMPROVED APPROACH FOR ROBUST SCHEDULING UNDER UNCERTAINTY <u>Utkarsh D. Shah</u> , Yannis A. Guzman, Logan R. Matthews and Christodoulos A. Floudas	
D3	10:40 - 11:00	CO2 CAPTURE AND CONVERSION TO CHEMICALS VIA SYNGAS: SUPERSTRUCTURE-BASED PROCESS SYNTHESIS, MODELING, AND OPTIMIZATION Priyadarshini Balasubramanian, Ishan Bajaj and M. M. Faruque Hasan	

Track	Afternoon	Presentation	
D4	3:30 - 3:50	ANCHOR-TENANT MODELS FOR THE SYNTHESIS OF ECO-INDUSTRIAL PARKS THROUGH CARBON-HYDROGEN-OXYGEN SYMBIOSIS NETWORKS Kevin Topolski, Mohamed Noureldin, and Mahmoud El-Halwagi	
D5	3:50 - 4:10	DYNAMIC MODELING AND OPTIMIZATION OF RENEWABLE HIGH- PRESSURE PEM HYDROGEN PRODUCTION AND STORAGE Gerald S. Ogumerem and Efstratios N. Pistikopoulos	

Poster Session I

MSC 2406

11:00 A.M. - 12:15 P.M.

Advanced Materials P.1 Aramid Nanofiber/Graphene/Carbon Nanotube Composite Electrodes for Structural Energy and Power Anish Patel, John Harris and Jodie L. Lutkenhaus P.2 Solid-state Synthesis and Thermoelectric Properties of Magnesium Silicide Azhar Ali, Venkata Vasiraju, Yixi Chen and Sreeram Vaddiraju **P.3 Electric Field Induced Birefringence in Isotropic Suspensions of Nanoplates** Carlos Mejia, Abhijeet Shinde, Ivan Dozov, Padetha Tin, Patrick Davidson and Zhengdong Cheng **P.4** Biodegradable 3D Printed Oil Absorbents with Tunable Capillary Architectures Duanduan Han and Victor Ugaz **P.5** Electrolyte Structure and Behavior of Polysulfide species in Lithium-Sulfur Batteries Ethan P. Kamphaus and Perla B. Balbuena **P.6** Rapid Microwave-assisted Synthesis of Hybrid Zeolitic-Imidazolate Frameworks with Mixed Metals and Mixed Linkers Febrian Hillman, John Zimmerman, Seung-Min Paek, Mohamad R. A. Hamid, Woo T. Lim and Hae-Kwon Jeong **P.7** Liquid Surfactants for Processing Boron Nitride Nanosheets (BNNSs) Touseef Habib, Dinesh Sundaravadivelu Devarajan, Fardin Khabaz, Dorsa Parviz, Thomas C. Achee, Rajesh Khare and Micah J. Green **Process Systems Engineering** Model order reduction of parabolic PDE systems based on temporally-local Dynamic mode **P.8** decomposition with control Abhinav Narasingam and Joseph Sang-Il Kwon **P.9** Global Optimization of Constrained Grey-Box Models for Well Injection and Production Burcu Beykal, Fani Boukouvala, Nadav Sorek, Hardikkumar Zalavadia, Eduardo Gildin, Christodoulos *A. Floudas and Efstratios N. Pistikopoulos* **P.10** Improved Data-Driven Mathematical Modeling and Global Optimization Framework: An **Application in Refinery Planning Operations** C. Doga Demirhan, Fani Boukouvala Kyungwon, Kim Hyeju Song, Efstratios N. Pistikopoulos and Christodoulos A. Floudas P.11 Simultaneous Process Network Synthesis and Process Intensification Using Grid Superstructure Jianping Li, Salih Emre Demirel and M. M. Faruque Hasan **Pharmaceuticals and Bioengineering** P.12 Binding of Cholera toxin subunit B with heterogeneous glycolipids on cell mimicking surfaces Pratik Krishnan, Akshi Singla, Chin-An Lee, Joshua D. Weatherston, Nolan C. Worstell and Hung-Jen Wu 12

P.13	The production of high-value intracellular compounds using a process synthesis framework
	<u>Alexander M. Sabol,</u> Maria-Ona Bertran, Jonathan P. Raftery, Rafiqul Gani and M. Nazmul Karim
P.14	Modeling LPS-induced TNF-a Production in Macrophages
<i>a a</i>	Dongheon Lee, Yufang Ding, Arul Jayaraman and Joseph Sangil Kwon
Safety	⁷ Engineering
P.15	Incorporating Human Factors Engineering Methods in the System Life Cycle of Offshore Oil and Gas Industries <u>Changwon Son</u> , Syeda Zohra Halim, Yogesh Koirala and M. Sam Mannan
P.16	Dust-Gas Hybrid Minimum Ignition Energy Prediction Haitian Han and Chad V. Mashuga
P.17	Aerosol generation approach and combustion simulation <u>Shuai Yuan</u> and M. Sam Mannan
Energ	Y .
P.18	Countercurrent Enzymatic Saccharification and Continuum Particle Distribution Model of Pretreated Corn Stover Chao Liang, Mark Holtzapple and M. Nazmul Karim
Envir	onmental Engineering
P.19	High-flux hybrid membranes for effective oil-water separation from oil-contaminated water <u>Glenn Zeng</u> , Lecheng Zhang, Dali Huang and Zhengdong Cheng
Micro	pelectronics and Nanotechnology
P.20	Using black particles as an additive to produce tunable structural colors with high color contrast in photonic crystals Dali Huang, Minxiang Zeng, Lecheng Zhang and Zhengdong Cheng
P.21	Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition <u>Huilei Zhao</u> and Ying Li
	13

Poster Session II

MSC 2406 **1:30 P.M. - 2:45 P.M**

	1.001.1111 2.101.1111.
Adva	nced Materials
P.22	Synthesis and Characterization of CdIF-1: A Cadmium Version of ZIF-8
	<u>Jingze Sun</u> , Liya Semenchenko, and Hae-Kwon Jeong
P.23	Computational Study of the Adsorption of a Phenanthrene Derivative over a Model Zeolite
	Monica M. Garnica-Mantilla, Ana E. Torres-Hernández, Luis E. Camacho-Forero, Carlos M. Celis-
	Cornejo, Gustavo E. Ramírez-Caballero and Perla B. Balbuena
P.24	PIL-Derived Carbon
	<u>Rui Sun</u> , Kelly M. Meek and Yossef A. Elabd
P.25	Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings
	Souvik De, Manjula I. Nandasiri, Herbert T. Schaef, Benard Peter McGrail, Satish K. Nune and Jodie
D. C.	L. Lutkenhaus
P.26	Porous nanomaterials with high performance energy storage
D 07	Wanmei Sun and Micah Green
P.27	The Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)-
	Poly(acrylic acid) Complexes
Droco	<u>Yanpu Zhang</u> , Ran Zhang, Maria Sammalkorpi and Jodie L. Lutkenhaus ss Systems Engineering
P.28	Simultaneous Design and Control of a Binary Distillation Column
D 2 0	Baris Burnak, <u>Justin Katz</u> , Nikolaos A. Diangelakis and Efstratios N. Pistikopoulos
P.29	Modeling of hydraulic fracturing and design of online optimal pumping schedule to
	achieve uniform proppant concentration
P.30	<u>Prashanth Siddhamshetty</u> and Joseph Sangil Kwon Systematic Process Intensification Using Building Blocks
1.50	Systematic Process Intensification Using building blocks
P.31	Systematic Analysis and Optimization of Energy-Water Nexus
1.51	Spyridon D. Tsolas, M. Nazmul Karim and M. M. Faruque Hasan
P.32	Natural Gas to Liquid Transportation Fuels Utilizing Chemical Looping Technologies for
1.02	Syngas Generation: Process Synthesis and Global Optimization
	William W. Tso, Alexander M. Niziolek, Onur Onel and Christodoulos A. Floudas
P.33	Monetization of Stranded Gas through Ammonia and Urea Production
	<u>Zehao Gou</u> , Debalina Sengupta, Mike Dou and M.M. El-Halwagi
Safety	y Engineering
P.34	The Integration of Design, Control, and Safety
	<u>Denis Su-Feher</u> , Yogesh Koirala, Efstratios Pistikopoulos and M. Sam Mannan
P.35	A systematic approach to alarm design with application to Tennessee Eastman Problem
	Joshiba Ariamuthu Venkidasalapathy, Costas Kravaris and M. Sam Mannan

P.36	A Leading Indicators-based Decision Support Tool to Predict Blowout Events
	<u>Nafiz Tamim</u> , Delphine Laboureur, M. Sam Mannan and A. Rashid Hasan

P.37 A New Semi-Automated HAZID Method for More Comprehensive Identification of Hazardous Scenarios

<u>Sunhwa Park</u>, Yan-Ru Lin and M. Sam Mannan

Energy

P.38 In-situ Mechanistic Investigation of an Organic Radical Polymer Cathode on Interfacial Charge and Mass Transfer

Shaoyang Wang, Fei Li and Jodie Lutkenhaus

Environmental Engineering

P.39 Advanced heavy gas dispersion model with less time and higher near-field accuracy than CFD-based simulation

Jiayong Zhu, Delphine Laboureur, and M. Sam Mannan

Microelectronics and Nanotechnology

P.40 Template-free 3D titanium carbide (MXene) particles crumpled by capillary forces <u>Smit. A. Shah</u>, T. Habib, H. Gao, P. Gao, W. Sun, M. J. Green and M. Radovic

P.41 Large-Scale Synthesis of Byproduct-Free Semiconducting Nanomaterials: Direct Conversion of Highly Porous Zn Pellets to Zn3P2 Nanowires <u>Yixi Chen</u>, Rakesh Polinnaya, Pranav Kannan, Azhar Ali and Sreeram Vaddiraju

IN SEARCH OF EXPLORERS

IN SEARCH OF REMARKABLE ENGINEERS

There is no greater challenge facing our planet than the search for sustainable energy solutions. No greater challenge requiring human ingenuity.

At Shell, as a member of our global team, you can make a real impact to the future of sustainable energy. Join us today and together we'll shape human solutions to the greatest of global challenges.

Explore the opportunities at www.shell.us/students

Shell is an Equal Opportunity Employer M/F/Vets/Disabled.

Dow

The Science to Your Success

Join the Dow team in creating innovative solutions for human progress

Ascend is a global leader in the production of high-quality chemicals, fibers and plastics. We believe the best education is hands-on experience, and our programs are designed to allow our engineers to learn by doing.

Learn more about our programs for co-ops, interns and new college hires at ascendmaterials.com/aggies.

inspiring everyday

©2017 Ascend Performance Materials Operations LLC. The Ascend Performance Materials mark and logos are trademarks or registered trademarks of Ascend Performance Materials Operations LLC

Research at Texas A&M

Solving real-world challenges

Ranking among the world's leading research institutions with more than \$892.7 million in research expenditures (FY2016), Texas A&M is at the forefront in making significant contributions to scholarship and discovery, including that of science and technology.

Texas A&M ranked in the top 20 of the National Science Foundation's Higher Education Research and Development survey (2015), based on expenditures of more than \$866.6 million in fiscal year 2015. Texas A&M is one of only a few institutions in the nation to hold triple designation as a land-, sea-, and spacegrant university and is one of only 62 members of the prestigious Association of American Universities.

Texas A&M's Division of Research is committed to a truly comprehensive university where students, researchers, and inventors bring scholarship and innovation to bear for the benefit of the community, the state, and the nation.

Research@Texas A&M captures and delivers newly developed narratives by Universityaffiliated campuses, colleges, divisions, units, and agencies that demonstrate research advances, impacts, and successes.

tamuresearch

Produced by Research Communications

DIVISION OF RESEARCH TEXAS A&M UNIVERSITY

research.tamu.ed

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

2016 Department Fact Sheet

The Artie McFerrin Department of Chemical Engineering at Texas A&M University is one of the top rated chemical engineering departments in the world. It is also one of the largest, fully accredited chemical engineering programs in the country. The department has become a prolific chemical engineering research hub, with the faculty producing more than 200 refereed journal publications in 2016.

Located in the 205,000 square-foot, Jack E. Brown Chemical Engineering Building, the department provides its students and faculty members access to the latest resources, including 88 research and teaching facilities, six general classrooms, 13 conference rooms, and four computer laboratories.

Research

The Artie McFerrin Department of Chemical Engineering at Texas A&M University has faculty engaged in a wide breadth of studies ranging from highly applied research in the areas of biomass utilization, process safety and hydrocarbon processing to very fundamental research in nanotechnology, life sciences, process systems engineering and molecular simulation. The ultimate goal of the work is to positively impact society by providing new knowledge.

Department Research Areas

- Biomedicine | Biomolecules
- Biofuels | Biotechnology
- Catalysis
- Complex Fluids | Microfluidics |
 Soft Matter
- Computational Chemical Engineering
- Energy

Department Head

M.Nazmul Karim | Professor | T. Michael O'Connor Chair II nazkarim@tamu.edu

- Environmental | Sustainability
- Materials | Microelectronics
- Multiscale Systems Engineering
- Nanotechnology
- Process Safety | Process Systems Engineering
- Reaction Engineering
- Thermodynamics

Enrollment

Total Enrollment	969
Undergraduate	714
Graduate	255
Master's	117
Ph.D.	138

Faculty

Total Faculty	36
Professors	15
Endowed Professors	8
Chair Holders	4
Associate Professors	8
Assistant Professors	6
Research Assistant Professors	1
Lecturers/Senior Lecturers	5
Professors Of Practice	2
Emeritus Faculty	5
Referred Journal Publications	203

Gender Diversity

emale	37%
/lale	63%

engineering.tamu.edu/chemical