10th Annual Research Symposium

WELCOME NOTE

We hope to highlight the research conducted in the Chemical Engineering Department of Texas A&M University through the 10th Annual CHEGSA symposium and provide students an opportunity to showcase their work to their peers and industry professionals. We gratefully appreciate the industrial and internal Texas A&M sponsors for their generous monetary and technical support. Our goal is to offer a forum for the discussion of ideas that will enhance science and technology. We hope the event is successful and productive for all attendees.

ADVISORY COMMITTEE

Victor Ugaz

Jeetain Mittal

Ashley Henley

ORGANIZING COMMITTEE

Anubhav Sarmah	Yashaswini P	Bhargavi Bhat	Rushant Sabnis
President	VP Internal Affairs	VP External Affairs	Finance Chair
Smita S. Dasari	Khirabdhi Mohanty	Ethan Harkin	Sayyam Deshpande
Events Chair	Media Chair	Events Coordinator	Publicity Chair
Avi Kister	Jenna Vito	Ritu Ranjan	Samir Fegade
Sports Coordinator	Social Coordinator	Webmaster	Event Officer

Anjana Jayashri Executive Officer

TABLE OF CONTENTS

	Page No.
WELCOME NOTE	02
SPONSORS	04
SCHEDULE	05
ORAL PRESENTATIONS	06
KEYNOTE ADDRESS I	08
PANEL DISCUSSION I	09
PLENARY TALK	10
KEYNOTE ADDRESS II	11
PANEL DISCUSSION II	12
POSTER PRESENTATIONS	13
FLOOR PLAN	14

SPONSORS

Artie McFerrin Department of CHEMICAL ENGINEERING T E X A S A & M U N I V E R S I T Y

ALBEMARLE®

TEXAS A&M UNIVERSITY Texas A&M Energy Institute

TEXAS A&M UNIVERSITY Division of Research

Texas A&M Energy Research Society

Texas A&M University Good Bull Fund

SCHEDULE

Monday (6 th March 2023), Memorial Student Center				
Time	Event			
	Registration (MSC 2400)			
07:15 - 08:00	Breakfast (MSC 2400)			
08:00 - 08:15	Opening Remarks (MSC 2400)			
08:15 - 09:05	Keynote Address: Shell (MSC 2400)			
09:05 - 09:15	Transition			
	Oral Presentations			
09:15 - 11:00	Advanced Materials and Nanotechnology	Health and Bioengineering	PSE and Data Science	Safety
	(MSC 2501)	(MSC 2502)	(MSC 2503)	(MSC 2504)
11:00 - 11:10	Transition			
11:10 - 11:50	Panel Discussion I (MSC 2406)			
11:50 - 12:35	Plenary Talk: Albemarle (MSC 2406)			
12:35 - 13:30	Lunch (MSC 2400)			
13:30 - 14:15	Keynote Address 2: Dow (MSC 2406)			
14:15 - 14:55	Panel Discussion II (MSC 2406)			
14:55 - 15:10	Transition			
15:10 - 16:30	Poster & Networking Session (MSC 2400)			
16:30 - 17:00	Closing Remarks & Awards (MSC 2400)			

ORAL PRESENTATIONS

Time	Advanced Materials and Nanotechnology	Health and Bioengineering	PSE and Data Science	Safety
	Deniz Ebeperi	Qiang Hu	Ifeoluwa Babalola	Mohammad Zaid Kamil
09:15 - 09:30	Embedding Information in Additively Manufactured Metals via Magnetic Property Grading for Traceability and Counterfeiting Prevention	Glycan detection based on Surface- enhanced Raman scattering and machine learning	Embedded hands-on classroom activities tailored to personality preferences enhance student learning in core undergraduate chemical engineering courses	A Hybrid Risk Assessment Approach of Multi- Source Heterogeneous Data
	David Kumar Yesudoss	Nidhi	Marcello Di Martino	Mohammad Sadiq Saeed
09:30 - 09:45	Engineering of Titanium Carbonitride MXene for Pt-like HER activity by surface modification with Ruthenium	Interdisciplinary Perspective of 3D Printing Incorporating 2D Nanomaterials	Modeling and optimization strategies for multi-scale food- energy-water nexus systems	Human health risk assessment model due to growing concern of microplastic intake by the Arctic people
	Eugenie Marie Pranada	Bhavya Jaiswal	Natasha Jane Chrisandina	Yutian Qian
09:45 - 10:00	Subsurface Oxygen Reduction Reaction Activity on Ti2N MXene Revealed by In-situ Raman Spectroelectrochemistry	Bacteria Transformation using Microfluidic Continuous Electroporation in Paper (µCEP)	Multi-scale integration of resilient distributed energy systems	Constructing a Process Safety Risk Index Empowered by ASPEN Plus Simulation
<u> </u>	Bright Ngozichukwu	Liangyu Qian	Silabrata Pahari	Mitchell Huffman
10:00 - 10:15	Stability and Optoelectronic Properties of Two-Dimensional Titanium Nitride Ti4N3Tx MXene	Discovery of sequence fingerprints governing the substrate specificity in a microbial oxidoreductase	Optimal feedback morphology control of amphiphile self- assembly using Markov state models: numerical studies and experimental validation	Design of future energy systems with embedded life cycle emission considerations

Time	Advanced Materials and Nanotechnology	Health and Bioengineering	PSE and Data Science	Safety
10:15 - 10:30	Ray Yoo Optimizing Ti2N MXene Reactivity Through Decoupling Surface and Bulk Phenomena	Vijay Ravisankar Development of rational design criteria for point of care (POC) microfluidic Rayleigh- Behard convective polymerase chain reaction (RB-PCR)	Ebtihal Youssef Examining the Efficacy of Contemporary Alternative Oxidation Reactions Towards Green Hydrogen Production	Sankhadeep Sarkar Fundamentals of Battery Safety in Electric Vehicles
10:30 - 10:45	Kailash Arole Effects of Ti3C2Tz MXene nanoparticle additive on fluidic properties and tribological performance	Niraj Ashutosh Vidwans Real-time Study of Photocatalysis- induced Viability Loss of Escherichia coli Using Single-cell Level Measurements of Cell Motility	Moustafa Ali Process Modeling, Design, and Intensification of Oxidative Coupling of Methane (OCM) Process	
10:45 - 11:00	Cheng-Che Hsiao Electrochemically Activated Ti4N3Tx MXene Electrodes for Batteries and Supercapacitors	Minchen Mu Multifunctional metal- free coating with antibacterial and antiadhesion capabilities based on mesoporous silica	Colson Johnson Experimental Analysis of Autoignition as it Pertains to Fire Prevention	

KEYNOTE ADDRESS I

Opportunities for Chemical Engineers in Accelerating the Transport Sector Energy Transition

Time: 8:15 - 9:05 AM (MSC 2400)

Shyamal Bej, Shell

Shyamal Bej is a Senior Principal Science Expert in the Process Development Group of Shell and currently supporting several projects related to low carbon renewable fuels, waste plastic to chemicals and carbon dioxide abatement. Before joining Shell in 2012, he worked for the Indian Institute of Petroleum, the University of Michigan, ConocoPhillips and British Petroleum (BP) in the areas of petroleum refining, petrochemicals and specialty chemicals. Shyamal has a total experience of about 32 years in fundamentals of catalysis and reaction engineering, catalyst and process development, technology due diligence and derisking, support to commercialization and trouble shooting in commercial plants. He was heavily involved in developing, commercializing and improving several technologies. Shyamal received his PhD in Chemical Engineering from the Indian Institute of Technology, Kanpur, India and did his postdoctoral research in Catalysis from the University of Michigan, Ann Arbor, USA.

PANEL DISCUSSION I

Current Challenges and Solutions in Chemical Engineering Time: 11:10 AM to 11:50 AM Location: MSC 2406

Mark Barteau Texas A&M University

Joseph Kwon (Moderator) Texas A&M University

Ron Presswood Elemental Recycling

Qing Sun Texas A&M University

Nazmul Rahmani Texas A&M University

PLENARY TALK

Lessons Learned the Hard Way: The Evolution of a Reactive Hazard Program Time: 11:50 AM - 12:35 PM (MSC 2406)

Daniel Smith, Albemarle

Dan Smith is a Distinguished Advisor with Albemarle Corporation, and the technical leader of Albemarle's Chemical Reactivity and Engineering Fundamentals group which provides technical expertise in chemical reactive hazards and pressure safety relief design. Dan has 37 years of experience in the chemical process industry - the last 20 emphasizing process safety. Dan is an AIChE Senior Member and an active member in the Design Institute of Emergency Relief Systems (DIERS). Dan is a teacher of the DIERS Basic Emergency Relief System Design (CH172) and Advanced Emergency Relief System Design (CH173) AIChE courses. He has a B.S. degree with honors in Chemical Engineering from the University of Arkansas.

KEYNOTE ADDRESS II

Nonlinear Mixed-Effects Models for Parameter Estimation Time: 1:30 - 2:15 PM (MSC 2406)

Daniel A. Hickman, The Dow Chemical Company

Dan Hickman is a Senior R&D Fellow in the Engineering and Process Science department of Dow's Core Research & Development. He received his B.S. in chemical engineering from Iowa State University (1988) and his Ph.D. in chemical engineering from the University of Minnesota (1992). In 29 years with Dow, Dan has served as a subject matter expert and technical leader in reaction engineering and process development for numerous reaction systems across many Dow businesses and technologies. His industrial reaction engineering experience includes working with stirred tank reactors, fixed bed reactors, trickle bed reactors, and fluidized bed reactors. His contributions at Dow include the conceptual design of new reactor systems for three commercial processes and the development of training and resources that facilitate efficient and reliable reactor scale-up from the laboratory. Dan holds 24 patents and has authored 31 journal articles and book chapters and more than 200 internal Dow reports. Dan was named the Mid-Michigan AIChE Chemical Engineer of the Year in 2014, received the CRE Practice Award from the Catalysis and Reaction Engineering Division of AIChE in 2015, and currently serves the global reaction engineering community as the president of the board of directors for ISCRE.

PANEL DISCUSSION II

Career Options for PhDs: Academia, Industry, and National Labs Time: 2:15 PM to 2:55 PM Location: MSC 2406

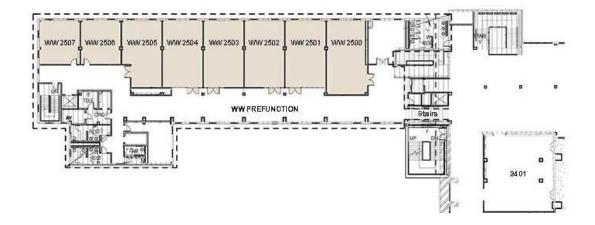
Daniel Hickman Dow

Jeetain Mittal Texas A&M University

Manish Shetty Texas A&M University (Moderator)

Sukaran Arora Dow

Micah Green Texas A&M University


POSTER PRESENTATIONS

Poster No.	Presenter	Presentation Title
P1	Krishna Chaitanya Gadepally	Image Complexity and Convolutional Layers
P2	Tamunoemi Opakirite Braide	Divalent Cation Effects in Poly(diallyldimethylammonium)- Poly(styrene sulfonate) Complexes
P3	Razeen Shaikh	Sloppy models in Systems Biology: a case study of the Smad signaling model
P4	Austin Johnes	A Framework for Applying Safety Indices into the Design and Optimization of Dynamic Chemical Supply Chains
P5	Silabrata Pahari	Accelerated kinetic Monte Carlo (kMC) simulations and density functional theory (DFT) to predict turn-over frequencies in heterogeneous complex catalytic reactions
Р6	Parth Shah	Achieving optimal paper properties: a layered multiscale kMC and LSTM-ANN-based control approach for Kraft pulping
P7	Bhushan Pawar	Resilience assessment framework for fast response process systems
P8	Svettlira Van Jakovich	Credential Sharing on High Performance Computing Systems
Р9	Ankush Rout	Design of Disaster Resilient, Reliable and Resourceful Hydrogen Generation unit
P10	Rahul Kakodkar	Energiapy - a decision making and risk analysis software framework
P11	Yilun Lin	Multi-scale modeling and optimization framework for the design of future circular energy economies focusing on material transition
P12	Bhavana Bhadriraju	Safety in Energy Storage
P13	Siddhesh Shirish Borkar	Hydrogenolysis of polyolefins over supported metal catalysts
P14	Swaminathan Sundar	Design of future energy systems with embedded life cycle emission considerations
P15	Dustin Kenefake	Efficient Integration of Neural Networks into Model Predictive Control - A Multi-parametric Approach
P16	Ahmed Elkady	Identification of Risk Factors in offshore wind-integrated hydrogen production system
P17	Abani	Inverse Emulsion-Crosslinked Cyclodextrin Polymer Nanoparticles for Selective Adsorption and Chemiresistive Sensing

FLOOR PLAN

Memorial Student Center, TAMU

14

TEXAS A&M UNIVERSITY Artie McFerrin Department of **Chemical Engineering**

Undergraduate program #12 ranked No. 12 (Public) U.S. News & World Report, 2022

#16

Graduate program ranked No. 16 (Public) U.S. News & World Report, 2023

Degrees Conferred

- 242 B.S. Chemical Engineering
- M.S. Chemical Engineering 5
- M.S. Safety Engineering 6
- Masters in Biotechnology 9
- M.Eng Chemical Engineering 13
- Ph.D. Chemical Engineering 31

Research Expenditures \$25.6 Million (2022)

By the Numbers

- **Faculty Members** 48
- 1,034 Students (Fall 22)
 - 770 Undergraduates
 - **265** Graduates

Research Areas

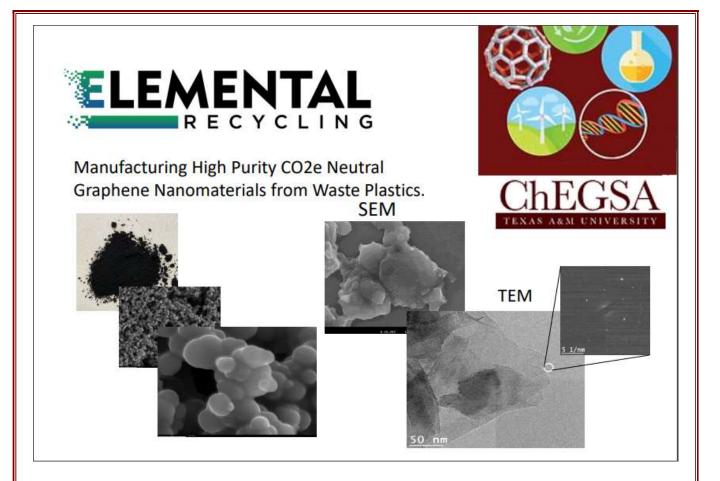
- **Biomedicine and Biomolecules**
- Biofuels and Biotechnology
- Catalysis
- Computational Chemical Engineering
- Complex Fluids, Microfluidics and Soft Matter
- Nanotechnology
- Energy
- Process Systems Engineering
- Environmental and Sustainability
- Reaction Engineering
- Materials and Microelectronics
- Process Control and Process Safety

ARE YOU INSPIRED BY "WHAT'S NEXT"? SO ARE WE.

When you join the Albemarle team, you contribute to a better tomorrow. You will play a role in powering many of the world's largest and most critical industries, from energy and communications to transportation and electronics. We are putting innovation to work to improve people's lives and we want YOU to be a part of it.

Choose to unlock your full **POTENTIAL**. Apply today.

ALBEMARLE[®]


How would you innovate the future of energy?

Team up towards a better tomorrow. Join Nabors.

nabors.com/careers | Innovating the Future of Energy ///

2023 Mary Kay O'Connor Safety & Risk Conference

Safe and Sustainable Energy Transition

In Association with IChemE and C-RISE October 11-13, 2023 T

Mary Kay O'Connor Process Safety Center

26th Process Safety International Symposium